Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow

We explored how responses of two populations variable in grazing tolerance provide feedbacks to nutrient supply by controlling carbon supply to soil heterotrophs. The study focused on differences in production and carbon and nitrogen allocation patterns between the two populations. The grazing-tolerant population, or on-colony population, is found on intensively grazed prairie dog colonies, and a grazing-intolerant population, the off-colony population, is found in uncolonized grasslands. Equations describing the production and allocation responses to defoliation for the two ecotypes described were incorporated into CENTURY, a nutrientcycling simulation model. Simulations showed an increase in plant production that paralleled increases in net nitrogen mineralization. Production was greater with grazing and was maintained at higher grazing intensities for the on-colony than the off-colony population. Differences between the populations provided important controls over nitrogen losses. Feedbacks between plant responses to grazing and nitrogen cycling accounted for increased nitrogen availability with grazing. These feedbacks were more important determinants of ecosystem function than were fertilization effects of urine and feces deposition. The simulation results suggest that ecosystem function may be sensitive to physiological differences in population responses to periodic disturbances like herbivory.


Ecosystem and physiological controls over methane production in northern wetlands

Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C:N and lignin:N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin:N and C:N ratios (∂CH4/∂EtOH = 0.9–2.3mg g−1) and weakly in the acidic bogs with wide C:N and lignin:N ratios (∂CH4/∂EtOH = −0.04–0.02 mg g−1). Observed Q10 values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.


Litter placement effects on microbial and organic matter dynamics in an agroecosystem

Two different agricultural tillage practices were used to study how changes in the structure of the soil—litter system affected litter decomposition rates, microbial community composition, and soil organic matter dynamics. Surface straw placement results in spatial separation of carbon—rich litter (C:N ratio 80:1) and mineralized soil nitrogen. In contrast, when the litter is plowed into the soil, straw carbon and soil nitrogen are in intimate contact. Our field studies in Colorado showed that fungal biomass in surface—straw treatments was 144% of that in the incorporated—straw treatments, probably because fungi, with their extensive hyphal networks, are able to utilize both the surface straw carbon and the available soil nitrogen. Field studies using 14C—labeled wheat straw showed that a greater proportion of added 14C was retained in the surface—straw treatment than in the incorporated—straw treatment. Maximum net N immobilization was higher and litter decomposition was slower in the surface straw than in the incorporated straw placements both with and without experimental nitrogen addition. Slower litter decomposition of the surface litter may contribute to reduced soil organic matter losses. Soil organic matter losses may also be reduced in no—till systems as a result of the increase in the ratio of fungal to bacterial activity because of the greater growth efficiency of fungi and the accumulation of carbon in the less decomposable fungal biomass. The surface placement of straw in no—till agriculture allowed management of microclimate and microbial populations so that losses of soil organic matter and nutrients were minimized.