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Modeling soil CO2 emissions from ecosystems
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Abstract. We present a new soil respiration model, describe a formal model testing procedure, and

compare our model with five alternative models using an extensive data set of observed soil res-

piration. Gas flux data from rangeland soils that included a large number of measurements at low

temperatures were used to model soil CO2 emissions as a function of soil temperature and water

content. Our arctangent temperature function predicts that Q10 values vary inversely with tem-

perature and that CO2 fluxes are significant below 0 �C. Independent data representing a broad

range of ecosystems and temperature values were used for model testing. The effects of plant

phenology, differences in substrate availability among sites, and water limitation were accounted

for so that the temperature equations could be fairly evaluated. Four of the six tested models did

equally well at simulating the observed soil CO2 respiration rates. However, the arctangent variable

Q10 model agreed closely with observed Q10 values over a wide range of temperatures (r2 = 0.94)

and was superior to published variableQ10 equations using the Akaike information criterion (AIC).

The arctangent temperature equation explained 16–85% of the observed intra-site variability in

CO2 flux rates. Including a water stress factor yielded a stronger correlation than temperature alone

only in the dryland soils. The observed change in Q10 with increasing temperature was the same for

data sets that included only heterotrophic respiration and data sets that included both heterotro-

phic and autotrophic respiration.

Introduction

Exchanges of carbon (C) among the atmosphere, biota, soil, and water
influence essential physical and biological processes from organismal to
global scales. Respiration of soil organic carbon (SOC) by microbes and
other soil organisms releases 50–75 pg of CO2-C to the atmosphere annually,
�10 times the annual emissions from burning fossil fuels (Schimel et al.
1996). Accurate models of soil respiration are needed to calculate net eco-
system exchange (NEE) rates for different natural and managed systems.
NEE is the net flux of C in or out of a system after accounting for CO2

fixation (photosynthesis), respiration, depositional inputs of organic C, and
erosional losses of organic C. NEE calculations help assess the degrees to
which natural and managed systems are sources or sinks of C. Understanding
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the primary controls of soil respiration is important because SOC represents
a large C sink that is subject to losses in response to natural and anthro-
pogenic disturbances. We will show how well different models simulate soil
CO2 fluxes from sites where heterotrophic respiration dominates and sites
where both heterotrophic and autotrophic respiration are included. An
objective of this paper is to quantify the temperature and water controls on
soil respiration. Reliable models of soil CO2 fluxes can be used to project
how changes in land use and climate will affect SOC levels and atmospheric
CO2 concentrations.

We describe a new heterotrophic respiration sub-model used in the
DAYCENT and CENTURY ecosystem models. DAYCENT (Parton et al.
1998; Kelley et al. 2000; Del Grosso et al. 2001) and CENTURY
(Metherell et al. 1993; Parton et al. 1994) simulate plant growth, soil C
and nitrogen (N) flows, and other ecosystem parameters. Heterotrophic
respiration in soils is primarily a function of substrate quality and quantity
(Janssens et al. 2001), soil temperature (Katterer et al. 1998), soil water
content (Davidson et al. 1998; Leiros et al. 1999), microbial community
(Holland et al. 2000), and acidity (Walse et al. 1998). Most SOC decom-
position models account for differences in substrate quality and quantity by
simulating different SOC pools with varying maximum decay rates (e.g.
Parton et al. 1994; Coleman and Jenkinson 1999). In these types of
models, maximum decay rates for each pool are usually attenuated using
functions involving air or soil temperature, precipitation, or soil water
potential (Burke et al. 2003). Walse et al. (1998) modeled decomposition of
labile C as the growth rate of bacteria and decomposition of recalcitrant
material as the growth rate of fungi using air temperature, soil moisture,
and soil acidity as driving variables. Alternatively, Pastor and Post (1986)
linked decomposition to NPP via N availability and assumed that
decomposition is controlled by actual evapotranspiration (AET) and litter
lignin and N concentrations.

Our primary goal was to improve the original temperature equation for
decomposition used in the CENTURY ecosystem model (Parton et al.
1987). Terrestrial biogeochemical models that are designed for regional to
global simulations require simple, general equations that relate processes,
such as decomposition, to readily available environmental drivers. Previous
decomposition models have been limited by a paucity of observations of
CO2 flux at freezing and sub-freezing temperatures (Katterer et al. 1998)
and by assumptions that microbial activity in frozen or snow covered soils
is negligible (Fahnestock et al. 1999). However, recently collected field data
show that significant CO2 flux rates can occur at zero and sub-zero tem-
peratures (Brooks et al. 1996; Sommerfeld et al. 1996; Fahnestock et al.
1999). Many models (e.g. Raich and Potter 1995) use a constant Q10 tem-
perature equation but Q10 values often vary depending on temperature
range (Lomandeer et al. 1998; Holland et al. 2000; Xu and Qi 2001).
Kirschbaum (1995) compared how well simulated Q10 values agreed with
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Q10 values from observed CO2 flux data. The best fitting models showed
low (1–3) Q10 values at temperatures greater than 20 �C and high (8–10) Q10

values at 0 �C. Predicted Q10 values at low temperatures were limited by a
lack of data for sub-0 �C temperatures and large variability in data from 0
to 5 �C. Field data collected over the past 5–10 years that included a large
number of observations of CO2 flux at sub-freezing temperatures yielded
similar Q10 values at high temperatures but suggest that previous models
overestimated Q10 values by a factor of �1.5–2 at temperatures near 0 �C.
Our model developed with this new data is likely to be more general than
other models because it includes a large number of observations at low
temperatures.

We also performed a quantitative evaluation of the existing published
variable Q10 temperature models (Parton et al. 1987; Jenkinson 1990; Lloyd
and Taylor 1994; Kirschbaum 1995) using our extensive soil respiration
data set (data not used to develop any of the models). The criteria for
goodness of fit include an evaluation of how well the models fit the
observed soil respiration fluxes and the observed changes in Q10 as a
function of soil temperature. The comparison with the observed changes in
the Q10 as a function of soil temperature is important because this reflects
the ability of the models to simulate change in soil respiration as a function
of change in soil temperature at different points along the soil temperature
curve. This is quite important from an environmental change point of view
because these soil temperature models are currently being used in biogeo-
chemistry models to predict changes in carbon budgets as a function of
changes in the soil temperature (Kirschbaum 1995). We believe this is the
first formal comparison of existing soil temperature models using an inde-
pendent data set.

To increase confidence in model testing, we used data from one site to
parameterize the model and reserved a more extensive data set for model
testing. Gas flux, soil temperature, and soil water content measurements from
native short grass steppe soils were used to parameterize our new arctangent
equation. Similar measurements from various native and disturbed systems
were used for model testing. The temperature effect on measured soil CO2

emissions can be confounded by site factors such as litter quality (Wang et al.
2000) and seasonal NPP patterns (Hogberg et al. 2001), so site and seasonal
factors were accounted for in building and testing the model. We assumed
that moisture stress can limit decomposition rates in dryland systems. The
arctangent temperature equation was compared with alternative models using
the conventional r2 parameter and the Akaike information criterion (AIC).
AIC combines elements of inferential statistics and information theory and is
useful for model comparisons because it quantifies the amount of information
that is lost when a model is used to approximate an observed phenomenon.
We show that our model is superior to alternative models using statistical
criteria because it better represents changes in Q10 values as a function of soil
temperature.
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Methods

Gas flux and ancillary measurements

The new data reported in this paper were collected from native, fertilized, and
plowed shortgrass steppe soils and winter wheat/fallow fields in northeastern
Colorado, and a sub-alpine meadow in Wyoming. The shortgrass steppe
measurements were taken from 1992 to 1996 in plots representing different soil
texture classes and fertility levels at the central plains experimental range
(CPER) and the winter wheat/fallow measurements were taken on private land
�20 km southeast of the CPER during the same time period. The CPER
(40 �8¢23¢¢N, 104�45¢15¢¢W) is located �60 km northeast of Fort Collins, CO
and average annual precipitation and temperature are �32 cm and �9.5 �C,
respectively (Mosier et al. 1991, 1996, 1997). The sub-alpine meadow (Mosier
et al. 1993) has mean annual precipitation and temperature of �100 cm and
��0.5 �C, respectively, and was sampled in 1991 and 1992. The plots were
established at the USDA/Forest Service glacier lake ecosystem experiments site
(GLEES) in the Snowy Range of the Medicine Bow Mountains (41�20¢N,
106�20¢W, elevation �3182 m) in southeastern Wyoming �65 km west of
Laramie. At the Colorado and Wyoming sites PVC pipes (inside diame-
ter = 20.3 cm, 4–6 per plot) were driven 8 cm into the soil within the plots to
establish permanent gas flux measuring anchors. On sampling days, usually
once per week, a 7.5 cm high-vented chamber was fitted onto the anchors and
gas samples were extracted with a syringe at 0, 15, and 30 min after the
chambers were attached (Mosier et al. 1991, 1993, 1997). Concentrations of
CO2 were measured by gas chromatography within 6 h of sampling and gas
flux was calculated based on changes in CO2 concentration as a function of
time. Adjacent to the permanent anchors, soil temperature (Tsoil) was measured
at 5 cm depth with a handheld digital thermometer and six soil cores (inside
diameter = 2.5 cm, depth = 15 cm) were combined, weighed, and oven dried
so that bulk density and volumetric soil water content could be calculated.

Data sets used for model development and testing

Winter season data from the native shortgrass steppe soils were used to
parameterize the temperature equation while year-round data from these soils
normalized by season were used to parameterize the water equation. Two data
sets were compiled for model validation. One, designated the temperate data
set, included data from the managed fields in Colorado (plowed/fertilized
pastures and winter wheat/fallow) previously described. This data set also in-
cluded observations from winter wheat/fallow fields in western Nebraska
(Kessavalou et al. 1998), alpine meadow and forest in Wyoming (Mosier et al.
1993), tall grass prairie soils in Kansas (Bremer et al. 1998), agricultural fields
in Michigan (Robertson et al. 2000), mixed deciduous forests in Massachusetts
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(Savage and Davidson 2001), and a beech forest in Germany (Brume 1995). A
sub-set of this data set, designated the heterotrophic data set, was extracted to
compile measured CO2 flux rates that were due almost entirely to SOC
decomposition because plots were kept vegetation free. Herbicides were ap-
plied to the winter wheat/fallow fields during the fallow season, some short-
grass steppe plots were maintained vegetation free by plowing, and 15 m
diameter gaps were cut out of the beech forest and kept vegetation free.

The data used for model building and testing were normalized by site and
season so that the average flux was 1 unit at 12.5 �C for the growing and
non-growing seasons. We normalized by site to account for differences in CO2

flux rates that are driven by factors such as labile C availability and by season
to account for the effect of plant phenology on measured flux rates. This was
done for each site by dividing each data point from the growing season by the
average growing season flux in the interval from 10 to 15 �C and dividing each
data point from the non-growing season by the average non-growing season
flux in the interval from 10 to 15 �C. Lloyd and Taylor (1994) used a similar
approach to normalize soil CO2 respiration data acquired from different
studies. For the grassland, deciduous, and annually cropped systems the
growing season was defined as May–October and the non-growing season as
November–April. For the winter wheat/fallow rotations the growing season
was the months from wheat planting to harvest and fallow months were des-
ignated non-growing season. All the observations from the beech forest used in
this analysis were taken during the summer months. Measurements taken
within the beech forest stand were assumed to be growing season and mea-
surements taken in vegetation free gaps within the stand were classified
non-growing season.

Model goals and assumptions

Our intention was to develop a simple soil respiration sub-model that could be
used by general ecosystem models. Models designed for regional and global
applications require simple equations based on readily available abiotic drivers
(e.g. precipitation, temperature) to simulate ecosystem processes. These models
do not include many of the factors (e.g. microbial community) that control
processes such as decomposition, so regressions between simulated and ob-
served soil respiration rates often show r2 values less than 0.5. In contrast to
investigating the controls on decomposition rates that are not considered by
many global biogeochemical models, our goal was to develop and test a general
temperature equation that would apply to a large range of conditions.

We assumed that the amount of substrate controls the maximum decom-
position rate and that this can be reduced by unfavorable soil temperatures and
moisture stress. Our sub-model quantifying the effects of soil temperature and
water content on respiration assumes that labile C availability is known from
measurements or is simulated by a model. We assumed that measured
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respiration rates during the non-growing season were due primarily to SOC
decomposition while both decomposition and root respiration made significant
contributions to measured flux rates during the growing season. The majority
of measured heterotrophic CO2 emissions are from decomposition of the more
labile C pools (Trumbore et al. 1990; Schimel et al. 1994). Consequently, we
would not necessarily expect our temperature equation to apply to decompo-
sition of the more recalcitrant fractions of SOC, which may have a less sensitive
temperature response (Liski et al. 1999).

Model development

Winter season CO2 flux data from the native shortgrass steppe soils were used
to quantify the effect of temperature on SOC decomposition while winter and
summer data normalized by season were used to parameterize the water
equation. These factors are simply multiplied in our heterotrophic respiration
(RH) sub-model:

RH ¼ FðTsoilÞ � FðRWCÞ; ð1Þ

where RH is the combined effect of water and temperature on decomposition.
F(Tsoil) is the temperature effect normalized to 1 at 30 �C:

FðTsoilÞ ¼ 0:56þ ð1:46 � arctanðp � 0:0309 � ðTsoil � 15:7ÞÞÞ=p ð2Þ

and F(RWC) is the water effect normalized to 1 at RWC = 100%:

FðRWCÞ ¼ 5 � ð0:287þ ðarctanðp � 0:009 � ðRWC� 17:47ÞÞÞ=pÞ; ð3Þ

where RWC is the measured soil relative water content. The arctangent function
was used because it allows for varying sensitivity of the response variable
(respiration) to the independent variable (temperature or water). Parameters in
Eqs. (2) and (3) were obtained using observed values and optimization.

Figure 1a shows the response of winter season CO2 emissions to soil tem-
perature (Tsoil) when water was not strongly limiting, and F(Tsoil), our variable
Q10 arctangent function. Figure 1b shows the response of normalized CO2

emissions to RWC when temperature was not strongly limiting. The overall
model explained a reasonable amount of the variability in normalized CO2

emissions for the data set used for model building, although high observed
values tended to be strongly underestimated (Figure 1c). Using the entire
model building data set, the primary effect of temperature was significant
(r2 = 0.27), the primary effect of water was insignificant (r2 = 0.01), and the
interaction between water and temperature was significant (r2 = 0.47). The
primary effect of water was significant when data points subject to temperature
limitation (Tsoil < 15 �C) were eliminated (Figure 1b), providing further
evidence that temperature and water interact to control decomposition rates in
these soils.
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Figure 1. (a) Non-growing season CO2 emissions as a function of soil temperature for native

shortgrass steppe soils used for model building, (b) relative CO2 emissions for year round data from

the shortgrass steppe used to parameterize the relative water content (RWC) equation, and (c)

simulated relative CO2 emissions as a function of soil temperature and RWC versus observed

relative CO2 emissions.
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Our water function uses RWC as a metric for soil water availability because
it accounts for differences in water stress on biological activity at a given water
content driven by soil physical properties. Volumetric water content was
converted to relative RWC using the following:

RWC ¼ ðW�WPÞ=ðFC�WPÞ ð4Þ

where W is the measured volumetric soil water content, WP the wilting point,
and FC the field capacity. FC and WP were estimated for each soil using soil
texture data and time series data of soil water content. Both WP and FC tend
to increase as clay content increases (Saxton et al. 1986) and more water must
be removed from sandy than clayey soils to inhibit canopy conductance
(Landsberg and Waring 1997; Bernier et al. 2002).

Model comparisons

Competing models and model comparison criteria

We compared our arctangent model with the original CENTURY equation
(Parton et al. 1987), an exponential model, a linear model (Walse et al. 1998),
the variable Q10 Kirschbaum model (Kirschbaum 1995) and the variable Q10

Lloyd and Taylor empirical model (Lloyd and Taylor 1994). To fairly compare
the alternative temperature equations, we accounted for the effects of site
specific factors, (e.g., substrate availability), coarse plant phenology, and water
limitation on measured soil respiration rates. Simulated and observed Q10

values as well as CO2 flux rates were used in model comparisons. We defined
Q10 as the ratio of the rate of a process at 5 �C above a particular temperature
to the rate of the process at 5 �C below that temperature. For an exponential
function, y = a * e(bx), the Q10 does not vary with temperature and can be
calculated as Q10 = e(10b). Q10 values were calculated for the two validation
data sets by sorting the data by temperature and deriving the best fitting
exponential function for normalized CO2 respiration as a function of tem-
perature for overlapping 10 �C ranges centered at integer temperature values in
the range from 5 to 25 �C. For the variable Q10 models (Kirschbaum, Lloyd
and Taylor, arctangent, original CENTURY, linear), Q10 values were calcu-
lated by dividing the functional output at 5 �C above the temperature range
midpoint by the functional output at 5 �C below the temperature range mid-
point for the same integer temperature midpoints for which observed Q10

values were calculated.
In addition to the correlation coefficient (r2) we also used Akaike’s infor-

mation criterion (AIC) and Akaike weights (wr) to compare models. AIC
combines the Kullback–Leibler (K–L) discrepancy, the dominant paradigm in
information theory, with maximum likelihood estimation, the dominant par-
adigm in statistics (Burnham and Anderson 1998). Traditional statistical
inference is concerned with the probability that a data set would be observed
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given that a model (hypothesis) is correct. Conversely, inference based on
likelihood is concerned with the likelihood of a model being superior to
competing models when compared using a set of observations. The K–L dis-
tance is appropriate for model comparisons because it quantifies the infor-
mation that is lost when a set of model outputs, q, is used to approximate a true
distribution, p (Sakamoto 1986). The absolute K–L distance cannot usually be
calculated for a particular model because truth (e.g. the true relationship be-
tween soil temperature and decomposition) is unknown. However, Akaike
(1973) showed that likelihood can be used to estimate the relative K–L distance
for alternative models and to determine which competing model is closest to
truth as manifested by a particular data set. AIC estimates the expected relative
K–L distance and the model with the lowest AIC value is considered the best
model. This criterion accounts for goodness of fit as well as over-fitting the
data because AIC includes a penalty proportional to the number of free
parameters in the model. AIC is calculated as:

AIC ¼ �2logðLðhrÞ þ 2K; ð5Þ

where L(hr) is the maximized likelihood estimate for a model and its param-
eters, hr, compared to a data set, and K is the number of parameters in the
model that were allowed to vary when fitting the model to a particular data set.
L(hr) is calculated as

Lðhr ¼ �0:5 log

PN

n¼1
ðlogðobsÞ � logðsimÞÞ2

N
; ð6Þ

where N is the number of data points with observed and simulated values. To
compare models Akaike weights (wr) were calculated

wr ¼
e
�Dr
2½ �

PR

i¼1
e
�Dr
2

ð7Þ

Dr is the difference in AIC values between model r and the model with the
minimum AIC value and R is the number of models being compared. The
Akaike weight of model r(wr) may be interpreted as the probability that model
r is the best model (i.e. has the minimum K–L distance) given the data set used
for model testing and the designated set of competing models (Burnham and
Anderson 1998).

Model comparisons

Model comparisons for the six models were performed using the heterotrophic
and temperate data sets described previously. The heterotrophic data set was
used because the measured CO2 flux rates were the result of primarily
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heterotrophic respiration, so the ability of the models to simulate SOC
decomposition could be isolated. The temperate data set was also used even
though it contains measurements that are driven to a significant extent by root
respiration because this allowed for model testing using a large number of data
points collected from different sites.

Two methods were used to avoid confounding the effect of temperature on
respiration with the effects of seasonal and site specific factors. One way is to
include a site/seasonal multiplier in the respiration equation and the other is to
normalize CO2 flux rates for each site to a common value at a given temper-
ature (similar to Lloyd and Taylor (1994). Using the former method, we fit a
multiplier (M) for the growing and non-growing seasons for each site in the
following respiration equation:

Rsoil ¼ FðTsoilÞ � FðRWCÞ �M; ð8Þ

where M(kg CO2-C ha � 1 d � 1) was optimized by minimizing the AIC for
simulated versus observed CO2 flux rates. No parameters in the arctangent
function, F(Tsoil), or the original CENTURY, Lloyd and Taylor and Kirsch-
baum functions were allowed to vary (K = 0 in the AIC equation). Simulated
respiration rates were calculated in a similar manner for the exponential and
linear models except that in addition to M, the curve shape or slope parameter
was also allowed to vary (K = 1) when optimizing the exponential or linear
functions.

Results

Table 1 summarizes the results of model comparisons with the two data sets.
The arctangent, original CENTURY, Llloyd and Taylor and Kirchbaum all
performed equally well using both the r2 and the AIC criterion for the het-
erotrophic CO2 flux data sets. The Akaike weights (wr) imply that the expo-
nential, linear, original CENTURY, arctangent, Lloyd and Taylor and
Kirschbaum models have 3, 8, 22, 22, 22, and 23% probabilities, respectively,
of being the best model when compared using this data set. The r2 and wr

values were also similar for the arctangent, original CENTURY, Lloyd and
Taylor and Kirschbaum models when compared using the temperate data sets
(Table 1). However, when observed versus simulated Q10 values were com-
pared the wr values indicate that the arctangent function has a 41% probability
of being the best model and the Lloyd and Taylor is second best (Table 1). The
r2 parameter could not be calculated for the exponential using observed and
simulated Q10 values because Q10 does not vary with the exponential.

Figure 2 provides further evidence that the arctangent function is superior
for estimating the effect of temperature on decomposition. There is a strong
pattern of decreasing Q10 with increasing temperature for both the heterotro-
phic and temperate data sets (Figure 2). The original CENTURY and Kirs-
chbaum equations have the proper trend but tend to over-estimate Q10 values,
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particularly at low temperatures. Kirschbaum (1995) also showed that the
Jenkinson et al. (1991) model greatly overestimated Q10 values for soil
temperature less than 1 �C. The Lloyd and Taylor and arctangent equations
were quite similar when temperature were less than 20 �C, while the Lloyd and
Taylor equation tended to overestimate Q10 for higher temperatures.

Seasonal, biome and land management effects on soil respiration

We compared the M values that were optimized for growing and non-growing
season at each site as previously described. The data showed strong evidence

Figure 2. Q10 values for different temperature ranges predicted by the original CENTURY

temperature equation, our new arctangent equation, and calculated for observations from two data

sets used for model testing. There were not sufficient data points to calculate Q10 values for all

temperature ranges for the heterotrophic data set.

Table 1. Comparisons of best fitting linear and exponential functions, the original CENTURY

decomposition equation, and our new arctangent equation using Akaike weights (wr) and corre-

lation coefficients (r2) for simulated versus observed CO2 flux rates for two data sets and simulated

versus observed Q10 values from both of the data sets

Function Heterotrophic

data (CO2 flux)

Temperate data

(CO2 flux)

Combined data

(Q10 values)

wr r2 wr r2 wr r2

Linear 0.08 0.41 0.08 0.31 0.04 0.40

Exponential 0.03 0.41 0.08 0.31 0.10

Original CENTURY 0.22 0.49 0.22 0.31 0.11 0.89

Kirchbaum 0.22 0.46 0.22 0.30 0.11 0.82

Lloyd and Taylor 0.23 0.48 0.17 0.31 0.22 0.94

Arctangent 0.22 0.48 0.23 0.32 0.42 0.94
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that plant phenology is a major driver of within site CO2 flux rates and that
differences in average flux rates among sites are often related to NPP and SOC
levels (Figure 3, Table 2). Excluding the alpine forest soil, the ratio ofM values
for summer compared to winter ranged from 1.6 to 2.6, suggesting that roots
are responsible for a significant proportion of observed CO2 flux rates during
the growing season. Growing season M values tended to vary directly with
NPP and non-growing season with SOC levels. The linear regression between
non-growing season M value and SOC for the 7 sites with available SOC data
yielded an r2 value of 0.84.

The alpine meadow is in a depositional zone, has high NPP, high SOC levels
and also had the highest growing and non-growing season M values, while the
SOC depleted agricultural soils had low M values. Similarly, the native tall-
grass prairie has higher SOC and NPP than the native shortgrass steppe and
also has higher M values. The winter wheat/fallow fields in NE had higher M
values than the winter wheat fallow fields in CO. The CO fields had been in
production for more than twice as long as the NE fields and are depleted in
SOC to a greater extent than the NE fields. The plowed pasture had a higherM
value than the native pasture during the winter even though SOC levels were
similar, probably a result of increased decomposition rates resulting from
disturbance of soil aggregates.

The results in Table 2 show that our model generally did better (higher r2)
simulating fluxes due primarily to heterotrophic respiration (non-growing
season) than fluxes that included a large proportion of root respiration
(growing season). This is expected because the model was parameterized to
simulate respiration from SOC decomposition. A meaningful r2 parameter
could not be calculated with temperature as the independent variable for the
alpine meadow and forest during the non-growing season because under the

Figure 3. Growing season and non-growing season optimized multipliers (M) for the shortgrass

steppe soils used for model building and some of the soils used for model testing.
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snow pack the range of observed temperatures was confined to � 3 to � 1 �C
(Sommerfeld et al. 1996). Such a narrow range of values for the independent
variable is not sufficient to allow for the possibility of a significant regression.

Discussion

We described a variable Q10 temperature model used to simulated SOC
decomposition and showed that all of the variable Q10 models performed
equally well when compared to the observed CO2 flux data while the arctan-
gent and Lloyd and Taylor functions were best at simulating the observed
changes in Q10 as a function of temperature. Many researchers have found
evidence that Q10 values vary with temperature range (e.g. Lomander et al.
1998; Holland et al. 2000; Xu and Qi 2001). Kirschbaum (1995) compared
simulated Q10 values from different models and from incubations as a function
of temperature and showed that Q10 values decrease as temperature increases.
Our model and the data we compiled for model testing provide further evi-
dence that Q10 varies inversely with temperature but our data suggests that Q10

values are lower than those reported by Kirschbaum (1995) for low tempera-
tures (<10 �C). There are several reasons for this discrepancy. The lack of CO2

flux data at sub-freezing temperatures led to unreliable Q10 estimates at low
temperatures. Q10 values reported in Kirschbaum (1995) were calculated from
individual studies whereas the Q10 values in this paper were calculated from an
aggregated set of normalized data from various sites. Also, the Q10 values in
Kirschbaum et al. (1995) were calculated from CO2 flux from incubations in
which other factors (e.g. substrate availability, moisture) were less likely to be
limiting than in the field soils that we analyzed.

The effects of site factors and plant phenology were accounted for when
comparing models by including a site/seasonal multiplier in the model or by

Table 2. Correlation coefficients (r2) for the linear regression between our soil respiration model

and measured soil respiration rates and optimized site/season specific soil respiration rates (M in kg

CO2-C ha � 1 d � 1) at 30 �C and no water stress

Vegetation type r2non-growing r2growing-season Mnon-growing Mgrowing-season

Native shortgrass CO 0.28 0.46 0.057 0.151

Plowed pasture CO 0.69 0.064*

Fertilized shortgrass CO 0.52 0.31 0.070 0.151

Wheat/fallow CO 0.46 0.24 0.042* 0.112

Wheat/fallow NE 0.49 0.20 0.052* 0.152

Tallgrass KS 0.85 0.77 0.099 0.262

Continuous cropping MI 0.16 0.13 0.055 0.086

Mixed deciduous MA 0.48 0.38 0.106 0.176

Beech Germany 0.51 0.72 0.063* 0.116

Alpine meadow WY 0.54 0.133 0.325

Alpine forest WY 0.32 0.35 0.280

*Indicates plots kept free of vegetation by plowing, herbicide, or tree removal.
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normalizing the data by site/season. Models were compared using a large data
set that included measurements driven by heterotrophic and autotrophic res-
piration (temperate data set) and a data set for which measured CO2 flux rates
were due almost entirely to decomposition because the plots were maintained
vegetation free. Comparisons with the heterotrophic and temperate data sets
show that most of the models compare well with observed soil CO2 respiration
data. The preponderance of the evidence (Table 1, Figure 2) supports the
conclusion that the arctangent and Lloyd and Taylor models are the best
models because they also correctly predicted the observed Q10 changes with
increasing temperature.

When using AIC and wr, model error is calculated as the difference between
ln(observed) and ln(simulated) whereas r2 uses non-transformed data. The
effect of using the natural logarithm is that model errors at low observations
are given weights proportional to errors when observations are high. The r2

parameter tends to discount model errors when observations are low and to
over-emphasize the importance of simulating high values correctly. For these
and other reasons, the utility of r2 as a tool for model comparisons has been
questioned (MsQuarrie and Tsai 1998).

Analysis of data from various soils supports our assumptions that substrate
availability is a primary inter-site control of soil CO2 respiration and that
seasonal NPP patterns, as well as temperature, are important intra-site con-
trols. Optimized non-growing season multipliers (M in Table 2, Figure 3)
varied by more than a factor of two among sites and are at least partially the
result of differences in substrate availability. For example, non-growing sea-
son M was higher for the tallgrass prairie than the shortgrass steppe and the
prairie has higher SOC (�5 kg C m � 2 versus �3 kg C m � 2). Within sites,
plant phenology and temperature both strongly influenced respiration rates in
most of the soils we tested. Growing season M values were higher than non-
growing season M values. This implies that at a given temperature more
respiration occurs during the growing season because root respiration makes
a greater contribution to total flux rates. It is important to account for sea-
sonal differences in labile C availability because, as was pointed out by Gu
et al. (2004), temperature sensitivity will be overestimated if changes in labile
C and temperature are in phase and underestimated if changes in labile C and
temperature are out of phase. Comparison of growing and non-growing
season M values suggests that roots are responsible for a significant portion
(35–65%) of total respiration during the growing season. This is consistent
with isotope data showing that �35–50% of soil CO2 emissions from
shortgrass steppe soils during the growing season were due to decomposition
(Pendall et al. 2003) and �55% of soil CO2 emissions from temperate forests
late in the growing season were due to rhizosphere respiration (Andrews et al.
1999). Similarly, radiocarbon data collected along an elevational gradient
showed that SOM decomposition was responsible for �20–50% of CO2 flux
during the growing season and close to 100% during the non-growing season
(Wang et al. 2000).
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Although our new arctangent function represents an improvement in pre-
dicted Q10 values compared to previous models, our model still explained less
than 50% of observed CO2 fluxes at many sites. Correlation coefficients are
relatively low for several reasons. Bulk soil water and temperature are used to
drive the model but these do not account for the heterogeneity in environ-
mental conditions in microsites populated by microbes. The ability to model
soil CO2 flux data is limited by the inherent variability of this type of data.
Factors not included in the model, such as within season fluctuations in labile
C availability, also contribute to model error.

Our model is also limited by the reliability of key model drivers. The
equations were parameterized using measured values for soil water and tem-
perature and we used simple site/seasonal multipliers to account for the effects
of these factors on respiration rates. In practice, the presented soil respiration
model will be incorporated into comprehensive ecosystem models that simulate
soil water, temperature, labile C availability, plant phenology, etc. Some of
these drivers of respiration are better simulated than others. Ecosystem models
have been compared with observed soil water and temperature data from soils
of different textures and found to perform reasonably well (Frolking et al.
1998; Parton et al. 1998; Del Grosso et al. 2001). In addition to simulating soil
water content correctly, soil hydraulic properties (e.g. field capacity, wilting
point) need to be reliably simulated. It is not soil water content alone that
controls water stress but the interaction between water content and soil
hydraulic properties that determine how tightly water is held in the soil matrix.
For example, canopy stomatal conductance can remain uninhibited at water
contents below 50% water filled pore space (WFPS) in sandy soils whereas
canopy conductance can be restricted in clay soils at water contents >80%
WFPS (Landsberg and Waring 1997; Bernier et al. 2002). In global ecosystem
models, hydraulic properties that influence water stress are often calculated
based on texture. This is another limitation to our decomposition sub-model
because other factors besides soil texture (e.g. SOM content, degree of aggre-
gation) that influence soil hydraulic properties are often ignored.

In contrast to soil water and temperature, we know of no comparisons of
observed and simulated labile C availability, partly because this is difficult to
measure directly. Another difficulty is that models simulate the autotrophic
and heterotrophic components of soil respiration separately whereas most
measurements of CO2 flux contain both components. Consequently, we believe
that the largest potentials to improve CO2 respiration models are to increase
the reliability of labile C estimates and to better represent autotrophic respi-
ration. Plant phenology and NPP allocation patterns are major controls on
root respiration and labile C availability. Below ground C allocation controls
the autotrophic component of soil respiration while senescence patterns of
above and below ground biomass control C inputs and influence the hetero-
trophic component. For most of the analyses in this paper we only considered
phenology in a simple manner and assumed a discrete growing season versus
non-growing season dichotomy (Figure 3). In reality, more continuous changes
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in plant phenology control autotrophic respiration and C inputs to the soil. To
explore this further, we used our existing temperature and water functions and
optimized 12 monthly multipliers instead of just two growing season/non
growing season multipliers for the data sets that had a sufficient number of
year-round observations. Figure 4 shows results for the shortgrass steppe and
mixed deciduous forest sites. Both sites show a strong seasonal pattern even
though temperature and water have been accounted for which provides evi-
dence that autotrophic respiration and labile C availability are primary
controls on soil CO2 fluxes.

The patterns of m values in Figure 4 during the growing season are likely
driven by the autotrophic component of soil respiration, which appears to be
correlated with NPP, at least for the systems examined for this analysis. Pat-
terns of m values during the non-growing season are likely dominated by the
heterotrophic component of soil respiration. At both sites, m values are higher
in autumn than spring, presumably because of increased C inputs from plant
senescence in autumn. Large inputs from leaf drop in the deciduous forest
result in larger m values in autumn than in the shortgrass steppe where above
ground litter inputs are less pulse driven. We suggest that more continuous
changes in NPP drive autotrophic respiration whereas more discrete pulses of
C from biomass senescence drive heterotrophic respiration. This implies that
both the autotrophic and heterotrophic components of soil respiration can be
tied to total NPP, C allocation patterns, and plant phenology. Although
dependence of our SOM decomposition model on accurate representation of
labile C availability and reliance on CO2 flux data that contain an uncertain
proportion of root respiration are potential limitations, these contingencies
also provide an opportunity to improve respiration estimates because changes
in autotrophic respiration and labile C availability are apparently highly
correlated with plant NPP and phenology, which can be predicted.

Figure 4. Monthly optimized multipliers (m) for the shortgrass steppe soils used for model

building and the mixed deciduous forest used for model testing.
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One reliable way to infer above ground NPP and plant phenology is with
remote sensing. Constraining plant phenology in ecosystem models with sa-
tellite data would likely lead to better simulation of the seasonal patterns of
autotrophic respiration and labile C availability and hence, better estimation of
soil CO2 emissions. Below ground C allocation patterns influence labile C
availability but are more difficult to predict. Some plant species show changes
in below ground allocation when fertilized or grown under elevated CO2

conditions (e.g. Shaw et al. 2002; Butnor et al. 2003) and models such as
DAYCENT (Parton et al. 1998; Del Grosso et al. 2001), assume that below
ground C allocation is controlled by plant phenology and environmental/
nutrient stress. An alternative, and perhaps complementary, approach could be
used for species, such as sunflower, that appear to have a fixed NPP:GPP ratio
(Chen et al. 2000). Models that predict both gross photosynthesis and above
ground productivity could also predict below ground productivity assuming
that NPP:GPP is constant. Constraining plant dynamics simulated by eco-
system models with remotely sensed data and developing more mechanistic
models that better simulate the controls on labile C availability and the
autotrophic component of soil respiration would improve simulated estimates
of soil CO2 flux.

For model testing purposes, we assumed that heterotrophic and root res-
piration have the same relative response to temperature, i.e. only scalar mul-
tipliers were used to distinguish growing season from non-growing season flux
rates. However, there is evidence that root respiration is more sensitive to
temperature changes in the 10–20 �C range than heterotrophic respiration in a
deciduous forest (Boone et al. 1998). Nonetheless, aggregated data from dif-
ferent systems show that our equation designed to model SOC decomposition
can successfully simulate temperature responses during the growing season in
many soils (Table 2) and Q10 values were similar for the heterotrophic and
temperate data sets (Figure 2). We also assumed that water stress response was
the same for autotrophic and heterotrophic respiration. However, heterotro-
phic respiration is less sensitive to soil water content than autotrophic respi-
ration and decreases substantially only when soils are close to air dryness or
saturation (O’Connell 1990). One reason autotrophic respiration is more
sensitive is that plants are subject to high water demand when the vapor
pressure deficit is high and hence can show stress at moderate soil water
contents.

Our water equation rarely explained more than 10% of the observed intra-
site variability in respiration rates and the interaction between our water and
temperature functions increased r2 values by more than 5% compared to the
temperature equation alone only for the dryland soils (shortgrass steppe and
winter wheat/fallow) that were studied. We suspect that we did not detect a
strong water effect in the non-dryland soils because these soils lacked a suffi-
cient number of data points which exhibited water stress. Similarly, Boone
et al. (1998) concluded that soil moisture was unrelated or weakly correlated
with soil moisture content for deciduous forest soils. However, Savage and
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Davidson (2001) used a multi-year data set and showed that differences in
precipitation patterns can explain a significant proportion of the observed
variability in inter-annual CO2 emissions from deciduous forests. We suggest
that the likelihood of finding a statistically strong water effect is dependent
upon the universe of data that is analyzed and that failure to do so does not
mean that water is not a primary control on soil respiration rates. Overall, our
data are consistent with other research (e.g. Billings et al. 1998) showing that in
non-saturated soils temperature is usually a more important control than water
and that the interaction between water and temperature can be important
(Davidson et al. 1998; Xu and Qi 2001).

Conclusions

This paper supports the findings of other researchers that different factors
interact to control soil respiration rates. Substrate availability and NPP explain
a large proportion of the inter-site variability in CO2 emission rates while
temperature and plant phenology often explain a majority of the observed
within site variability (Janssens et al. 2001). Our model explained between 16
and 85% of the observed within season variability in CO2 flux rates (Table 2).
This suggests that water and temperature are primary within site controls for
some, but not all systems. Similarly, we found a correlation between SOC and
potential respiration rates but differences in SOC levels among sites are not
always correlated with average CO2 flux rates and other factors such as
microbial community may be important (Holland et al. 2000). But for many
soils, substrate availability, plant phenology, soil temperature, and soil water
availability are primary controls on decomposition rates and can be modeled
reasonably well. In addition to a need for more mechanistic models of plant
phenology and C allocation patterns, another major limitation of the existing
models is the uncertainty in estimates of Q10 values for soil temperature
>20 �C. This uncertainty is primarily due to the lack of adequate data sets to
characterize soil respiration fluxes for soil temperature >20 �C.
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